Exercise 5

According to Sec. 10, the three cube roots of a nonzero complex number z_{0} can be written c_{0}, $c_{0} \omega_{3}, c_{0} \omega_{3}^{2}$ where c_{0} is the principal cube root of z_{0} and

$$
\omega_{3}=\exp \left(i \frac{2 \pi}{3}\right)=\frac{-1+\sqrt{3} i}{2} .
$$

Show that if $z_{0}=-4 \sqrt{2}+4 \sqrt{2} i$, then $c_{0}=\sqrt{2}(1+i)$ and the other two cube roots are, in rectangular form, the numbers

$$
c_{0} \omega_{3}=\frac{-(\sqrt{3}+1)+(\sqrt{3}-1) i}{\sqrt{2}}, \quad c_{0} \omega_{3}^{2}=\frac{(\sqrt{3}-1)-(\sqrt{3}+1) i}{\sqrt{2}} .
$$

Solution

For a nonzero complex number $z=r e^{i(\Theta+2 \pi k)}$, its third roots are

$$
z^{1 / 3}=\left[r e^{i(\Theta+2 \pi k)}\right]^{1 / 3}=r^{1 / 3} \exp \left(i \frac{\Theta+2 \pi k}{3}\right), \quad k=0,1,2 .
$$

The magnitude and principal argument of $z_{0}=-4 \sqrt{2}+4 \sqrt{2} i$ are respectively

$$
r=\sqrt{(-4 \sqrt{2})^{2}+(4 \sqrt{2})^{2}}=8 \quad \text { and } \quad \Theta=\tan ^{-1} \frac{4 \sqrt{2}}{-4 \sqrt{2}}+\pi=\frac{3 \pi}{4},
$$

so

$$
z_{0}^{1 / 3}=8^{1 / 3} \exp \left(i^{\frac{3 \pi}{4}+2 \pi k} 33\right)=2 e^{i \pi / 4} \exp \left(i \frac{2 \pi k}{3}\right), \quad k=0,1,2 .
$$

The first, or principal, root $(k=0)$ is
$z_{0}^{1 / 3}=c_{0}=2 e^{i \pi / 4}=2\left(\cos \frac{\pi}{4}+i \sin \frac{\pi}{4}\right)=2\left(\frac{1}{\sqrt{2}}+i \frac{1}{\sqrt{2}}\right)=\sqrt{2}(1+i)$,
the second root $(k=1)$ is

$$
\begin{aligned}
z_{0}^{1 / 3} & =c_{0} \omega_{3}=2 e^{i \pi / 4} \exp \left(i \frac{2 \pi}{3}\right)=2 e^{i 11 \pi / 12}=2\left(\cos \frac{11 \pi}{12}+i \sin \frac{11 \pi}{12}\right)=2\left(-\frac{\sqrt{3}+1}{2 \sqrt{2}}+i \frac{\sqrt{3}-1}{2 \sqrt{2}}\right) \\
& =\frac{-(\sqrt{3}+1)+(\sqrt{3}-1) i}{\sqrt{2}}
\end{aligned}
$$

and the third root $(k=2)$ is

$$
\begin{aligned}
z_{0}^{1 / 3} & =c_{0} \omega_{3}^{2}=2 e^{i \pi / 4} \exp \left(i \frac{4 \pi}{3}\right)=2 e^{i 19 \pi / 12}=2\left(\cos \frac{19 \pi}{12}+i \sin \frac{19 \pi}{12}\right)=2\left(\frac{\sqrt{3}-1}{2 \sqrt{2}}-i \frac{\sqrt{3}+1}{2 \sqrt{2}}\right) \\
& =\frac{(\sqrt{3}-1)-(\sqrt{3}+1) i}{\sqrt{2}}
\end{aligned}
$$

